A

A
=\
Y B

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

= \
|\
A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PSS THE ROYAL

or—— SOCIETY

Determination of the Thermal Conductivity of Toluene-A
Proposed Data Standard-from 180 to 400k under Saturation
Pressure by the Transient Hot-Wire Method I. The Theory of
the Technique

E. McLaughlin and J. F. T. Pittman

Phil. Trans. R. Soc. Lond. A 1971 270, 557-578
doi: 10.1098/rsta.1971.0089

Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at the top
right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1971 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;270/1209/557&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/270/1209/557.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

PHILOSOPHICAL
TRANSACTIONS

) §
A

/

AL

SOCIETY

Y B \

—
NI
olm
~ =
kO
= O
= uw

OF

OF

Downloaded from rsta.royalsocietypublishing.org

Phil. Trans. R. Soc. Lond. A. 270, 557-578 (1971) [ 657 ]

Printed in Great Britain

DETERMINATION OF THE THERMAL
CONDUCTIVITY OF TOLUENE—A PROPOSED DATA
STANDARD—FROM 180 TO 400K UNDER SATURATION
PRESSURE BY THE TRANSIENT HOT-WIRE METHOD
I. THE THEORY OF THE TECHNIQUE

By E. McLAUGHLINYt anp J. F. T. PITTMAN}
Department of Chemical Engineering and Chemical Technology,
Imperial College, London, S.W. 7

(Communicated by A. R. Ubbelohde, F.R.S.—Received 19 June 1970—Revised 12 May 1971)

CONTENTS PAGE

1. INTRODUCTION 558

2. NoraTION 559

3. MATHEMATICAL MODELLING OF THE CELL 561

3.1. The line source solution 561

3.2. Set I approximations 562

(a) The conservation equations 562

(b) Effective specific heats 562

(¢) Free convection and viscous dissipation 563

(d) Radiation 565

(¢) Reduction to the simple conduction equation 567

3.3. Set II approximations 567

(a) Temperature-dependent fluid properties 567

(p) Finite wire diameter 568

(¢) Finite conductivity wire 569

(d) Wall effects 570

(¢) Interfacial thermal resistance 571

(f) Time-dependent heat-source power 572

(g) End effects 573

(k) Initial fluid temperature distribution 575

APPENDIX. MEASUREMENT OF THE EFFECT OF THE POTENTIAL LEADS ON THE 576
HOT-WIRE TEMPERATURE

REFERENGES 578

The theory of the hot wire method of fluid thermal conductivity measurement is reviewed in detail
and extended where necessary for application to an experimental system. Particular attention is given to
assessing the size of approximations introduced in setting up the mathematical model of the cell which
relates the observed quantities to the fluid thermal conductivity.

Now at Department of Chemical Engineering, Louisiana State University, Baton Rouge, La. 70803, U.S.A.
Now at Department of Chemical Engineering, University College of Swansea, South Wales.

=

Vol. 270. A. 1209 (Price £1.20; U.S. $3.10) 44 [Published 16 December 1971

[ ,Q
e
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to S50
Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. IINOIY

WWWw.jstor.org


http://rsta.royalsocietypublishing.org/

%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y B \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

558 E. McLAUGHLIN AND J.F. T. PITTMAN

1. INTRODUCTION

Data on the thermal conductivity of fluids are rather scarce in comparison with the data available
on many other of their important physical properties, and in addition agreement between re-
ported results has often been poor. The scatter in the data on a number of common fluids extends
over 10 or 20 9, (Powell, Ho & Liley 1966) and agreement within a few per cent must be regarded
as indicative of careful work. A need is apparent for more high-precision data, over the widest
possible ranges of temperature and pressure to help in establishing standards for thermal con-
ductivity measurements. The same need is apparent in the heat transfer problems which occur
under the increasingly extreme temperatures and pressures encountered in modern technology.

In a previous paper (Horrocks & McLaughlin 1963) it appeared that the transient line source
technique for thermal conductivity measurement was intrinsically capable of accuracies com-
parable to those of the best steady-state methods. The technique consists in recording the
temperature rise of a fine, steadily heated vertical wire immersed in the test fluid. The hot wire
acts both as an electrical heating element and a resistance thermometer, and end effects are
avoided by monitoring the central part of the wire via potential leads. The limiting factor in the
precision of the measurement has formerly been the difficulty of recording the transient voltages
sufficiently accurately. This can now be overcome by using high-speed digital data logging
equipment, and the way is open for the exploitation of a number of features of the technique
which make it particularly useful in helping to meet the need for data outlined above.

The hot-wire method has the important feature in use on dense fluids, of a small-volume, low-
diameter cell making it particularly suitable for work at low temperatures or high pressures with
the additional advantage that only four electrical connexions have to be brought out of the cell.
The geometrical requirements of the cell are simple, leading to ease of construction and immunity
from distortion under extremes of pressure or temperature. Furthermore, the geometrical factor
of the cell consists simply of a single length, which is more easily obtained to a high accuracy
than the geometrical factors of steady state cells.

The most serious sources of error in fluid thermal conductivity measurements are generally
heat transfer by radiation and convection. In the steady-state technique these effects can be
eliminated or shown to be negligible by repeated determinations in which the temperature
drop across the fluid layer, or the layer thickness is varied. The present technique provides direct
information about the presence, or absence, of these effects from a single measurement lasting
a few seconds, and evidence is presented in part IT which suggests that errors arising from radia-
tion and convection can be successfully eliminated from individual determinations.

In the most carefully designed and operated cell it is inevitable that some of the measured
power input will be lost along stray conduction paths such as metal components, ceramic spacers
and others, rather than pass through the test layer. Ziebland (1969) compared typical guarded
flat-plate, concentric cylinder and steady state hot-wire cells with regard to their susceptibility
to error from this source. He concluded that the errors were by far the smallest in the hot-wire
cell. It should be expected therefore that the transient version would be even less affected be-
cause of the fine wires and larger cell: wire diameter ratios used.

Measurements by the present technique are shown below to be unaffected by a constant thermal
resistance at the surface between the hot wire and the fluid. Thus the temperature jump which
would occur in measurements on dilute gases has no effect, and the influence of surface films
or small gas bubbles on the hot wire is minimised. This contrasts with the steady-state methods
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THERMAL CONDUCTIVITY OF TOLUENE. 1 559

where corrections must be applied for interfacial temperature jump in gases and where, because
of the very small surface area of the wire, films of adherring gas bubbles can have a serious effect
in measurement on liquids. The advantage of the transient hot-wire method for measurements
on mixtures should also be mentioned, as the short duration of the measurement minimises
the development of concentration gradients by thermal diffusion. A final decisive argument for
further development of the transient hot-wire method is that it provides data obtained under
conditions fundamentally different from those of the steady state methods. Agreement between
data obtained by different methods provides valuable confirmation of the reliability of the
techniques.

Part I of this work reviews and extends the theory of the transient hot-wire cell, establishes
design criteria to minimise experimental error and provides means of correcting for the residual

€ITOrS.
2. NoraTION
A rate of absorption of radiant energy per unit volume
a wire radius
b radius of the cell walls
b* bla
C,, Cpw fluid, wire specific heats at constant pressure
C, fluid specific heat at constant volume
d fluid layer thickness in a steady state thermal conductivity measurement
K rate of emission of radiant energy per unit volume
Ei exponential integral, — Ei( —x) = f “ (ev/u) du
X

S accommodation coefficient
g acceleration of gravity
h heat transfer coefficient; wire to fluid
hs surface heat transfer coefficient in the case of interfacial thermal resistance
H truncation error after the first term of the series, equation (3.36)
I current '
VA Bessel functions of the first kind of order zero and one
L length of active section of the hot wire
L total length of the hot wire
M (2R Ay a)t
Pr Prandtl number
P thermodynamic pressure
p* 4mrykzA[patgoq a reduced form of the penetration distance
Py vapour pressure
q resistive energy dissipation rate per unit length in the hot wire, or power of a line

source of heat
qi energy per unit length of an instantaneous line source
In radiant energy flux per unit time and length from the hot wire
Q conduction heat flux per unit area and time
r radius
r¥ rla

44-2
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R active cell resistance
R total cell resistance
Ry, load resistance
S increase of rate of radiant energy emission per unit volume by the fluid above the
value at the start of a run
s 2kt
time
' t* Kt|a?
< T temperature rise of the hot wire
- N absolute temperature
§ S Th wire temperature rise with allowance for interfacial thermal resistance
@) — T; temperature rise due to an instantaneous line source of heat
=4 E T4 wire temperature rise with allowance for time dependent power dissipation
= O Ty temperature in the conduction equation containing a heat sink term approximating
E 8 the effect of radiant emission
o Ty temperature in the conduction equation allowing for temperature dependent fluid
) g properties
T = Ty temperature within the hot wire
82 5 T, temperature predicted by the line source solution
8 Z U internal energy
] .
TS u dummy variable
= vV voltage
v¥ 41ryAv,/pa*gaq, a reduced velocity
v fluid velocity
Uz fluid velocity in the z (axial direction)
Y, Y, Bessel function of the second kind of order 0 and 1
x distance normal to a plane surface
a —p~(0p[0T),
B P~ (Op[OP) 1
0% Euler’s constant, 0.577...
Y expy
ol 8T a temperature increment
b ~ LYM interfaci/al temperature jump
:é € emissivity
— 7 absolute viscosity
o E 0 absorption coefficient
= K thermal diffusivity
E O A fluid thermal conductivity
— 8 Aw thermal conductivity of the wire
4 mean free path

p fluid density

Pw density of the wire
Stefan—Boltzmann constant
O Thompson coefficient

T stress tensor
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THERMAL CONDUCTIVITY OF TOLUENE. I 561
¢ d(pC,)/dT
X dAjdT
w 2pC,[pw Cpw

3. MATHEMATICAL MODELLING OF THE GELL
3.1. The line source solution
The simplest mathematical description of the non-steady-state hot-wire cell is provided by
the line-source solution of the conduction equation

oC oT (62T laT)

T (3.1)

In this solution the medium is considered to be unbounded, isotropic, and have temperature
independent properties and be initially at a uniform temperature. At zero time a line source of
heat, of infinite length and with uniform power ¢ per unit length originates at r = 0. The
temperature at time ¢ referred to the initial value, is (Carslaw & Jaeger 1959a)

T = -z [EI(—;%?)] (3.2)

Now since (Abramowitz & Stegun 1956)

—Ei(—»x) =f°°f’;—”du

x

=—y—Inx— % £:—Qf—ﬁ(largxl < Tr), (3.3)
n=1 nn.

then taking the expansion to the second term of the summation, equation (3.2) becomes

4kt r?
T(T t) 1 A[ln ')/+Z‘K‘jt—]
4c 72 .
:4TFA[lnt+ln Bt ] (3.4)

where ¢’ = expy. The hot-wire temperature is obtained by substituting r = g, and, provided
that a?/4«t is sufficiently small in the range ¢, to ¢,, we may write

Ly

R (3.5)

T(a ) =Ty(a, ) = i In3?
A first estimate of the conductivity can therefore be obtained from the slope of the hot-wire
temperature plotted against In (time), provided that ¢ is known. In practice, the truncation
errors are negligible only if terms to 4% are included in (3.4). In the present work the hot wire
has a nominal diameter of one-thousandth of an inch, so that for a liquid such as toluene a?/4«¢
is of order 10~2 when ¢ equals 1s and a typical measurement lasts about 10s. In measurements
on gases under normal conditions a?/4«¢ would be of order 105 at 1s. The use of equation (3.5),
however, involves a large number of approximations in addition to truncation errors, and these
are conveniently examined under two headings. Those involved in reducing the full energy
conservation equation to equation (3.1) will be called set I, and the idealizations leading to the
line-source solution set II. The experimental conditions can be chosen so that none of these
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562 E. McLAUGHLIN AND J.F. T. PITTMAN

approximations is important and the errors resulting from them can be examined one by one.
This is done in the following sections with particular reference to the present measurements on
liquids, but discussion of measurements on gases is also included.

3.2. Set I approximations
(a) The conservation equations
The fluid in the cell is, in reality, viscous, isotropic and compressible with temperature
dependent specific heat, density and thermal conductivity. In addition it absorbs and emits
thermal radiation and is also subject to free convection. The conservation equations are therefore:

Dp/Dt = p(V. ), (.6)
pDy/Dt = VP— (V.7) +pg, (3.7)
pDUDt=V.Q—PV.v—7:Vv+Ad—E. (3.8)

To obtain an expression relating temperature to time, DU/D¢ is written as

DU 1 Dp_ DT ‘
o = p[ P+ T(aT)] +6,3 (3.9)

by virture of the thermodynamic equation
dU:[ _P+ T(aT) ]d”+c dT, (3.10)

By substituting (3.9) in (3.8) and cancelling terms by means of (3.6) we obtain

pCE—T(

Rk oc)[ DP]DT

3|~ PoT| D

where use has also been made of the thermodynamic relations

-V.Q+P+A-E, (3.11)

(@PRT), = aff and dplp = —adT+pdP.

® = —7:Vv is the irreversible rate of internal energy increase per unit volume resulting from
viscous dissipation.

(b) Effective specific heats

In the present measurements on liquids at saturation vapour pressure, two factors give rise
to changes in the total pressure on a fluid element during an experiment. First, the vapour pressure
will increase as the fluid is heated and, secondly, the hydrostatic pressure on the element will
fall as it moves upwards in convection. The substantive derivative of pressure with respect to
temperature may therefore be written as

DP dB, d

_|_

D7~ a7 Tar Pk (3.12)

"The value of the first term on the right-hand side can be estimated using the Clausius-Clapeyron
equation and Trouton’s rule. For the second, we refer to the results on convection described
below, where it can be seen that in a typical experiment a liquid element rises a distance of the
order of 10cm as it is heated through one degree Kelvin. With the use of data for toluene, it can
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be shown that DP/DT is (0) 103N m~2K~! and hence #DP/DT is (0) 10-8K-1, whereas «
is (0) 10-3K-1, In the present work therefore

ADPDT < o
and (3.11) may be reduced to

pC,DT/Dt = —V.Q +®+A—E, (3.13)

with an error equivalent to less than 0.1 9, in the specific heat.

In measurements on gases (3.13) does not hold; and although the cell forms a constant volume
enclosure, it is not permissible merely to replace C,, by C, in (3.13), since the system is not at
equilibrium. This case is discussed more fully elsewhere (Pittman 1968).

(¢) Free convection and viscous dissipation

In previous applications of the non-steady-state hot-wire technique it has been recognized
that convection sets a limit to the duration of a measurement by eventually causing major
departures from equation (3.5). Horrocks & McLaughlin (1963) and Van der Held & Van
Drunen (1949) estimated the time at which this occurred by generalizing correlations of steady-
state convection heat transfer. More recently Goldstein & Briggs (1964) obtained analytic ex-
pressions by solving the equation of motion during the early stages of the convection transient.
Their approach relies on the fact that at points remote from the lower end of the heated wire the
velocity field is virtually one-dimensional. This means that fluid rises without mixing, in shells
concentric with the heat source, so that the temperature field corresponds closely to its one-
dimensional, pure-conduction form. As convection develops, cool fluid rises from the lower,
thick current lead, and it is clear that the conductivity measurement must end before this fluid
begins to affect the temperature near the lower potential lead. Goldstein & Briggs estimated the
maximum duration of a measurement by first substituting a solution to (3.1) into the buoyancy
term of the equation of motion, and solving for the transient, one-dimensional velocity field.
They then supposed that the front of cool liquid rose with the velocity of the fluid in the one-
dimensional field above it, and that the conduction régime ended when the front had risen to
the height under consideration, irrespective of radial distance of the leading edge of the front
from the wire. Expressions for these so-called vertical penetration distances were obtained in
the form of integrals requiring numerical integration, and in the case of the expression for a
fluid of arbitrary Prandtl number the results are quite complex. For the present purposes it
seemed preferable to integrate the equation of motion directly by a numerical method.

Following the approach described above, the equation of motion becomes

0%, 16_11z+ocpgT_ p vz

o ror oy gt (3.14)

In reducing (3.7) to (3.14) the usual Boussinesq assumption has been made, namely that variable
density is important only in the buoyancy term, and that the fluid may otherwise be treated as
incompressible. The boundary conditions are

v, =0 r=a ¢t>0,

v2=0 r=5b t>0,

2
and T'is taken as Ty(r,t) = —ﬁ/iEi(—%’&), (3.15)
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564 E. McLAUGHLIN AND J.F. T. PITTMAN

that is, the line source solution has been used to approximate the temperature field round the
wire. Introducing the dimensionless variables

r* =rla, 1% =«tla®, v* = dTYAVs/pa’goy,
equation (3.14) can be written

29y % 1 * 1 * *2
N U ATy A (3.16)
Or*% " r*or*  Prot* 4%

Computer solutions of this equation were obtained, by using the Crank-Nicholson method, for
a wide range of parameters appropriate to measurements on liquids and gases. Reduced velocities
v* and reduced penetration distances P* were generated as functions of 7 *, t* and Pr. The reduced

penetration distance is defined as

t*
P =J’ vEdpt — 41T17/\/<z,
0 pagoq
¢
where z =f vz di.
0

Maximum values of P* were also tabulated for a series of ¢* values. Full results, together with
details of the calculations and a discussion of their accuracy, are given elsewhere (Pittman 1968),
but figures 1 and 2 show typical sets of values.

30r Pr=10
5*=400

1078¢#=90

10-3p*

B0 S T |

Ficure 1. Computed velocity profiles during the initial free convection transient for a fluid in an annulus around
a heated vertical cylinder.

The computed results serve two purposes. By using the appropriate heating rate and physical
properties of the fluid, the maximum duration of a measurement can be estimated for any given
position of the lower potential lead. The reasonableness of such estimates has been demonstrated
experimentally by Dring & Gebhart (1966), and was confirmed in the present work. In addition,
the data allow the importance of viscous dissipation to be examined.

For a velocity field in which the radial component is zero, we may write

D =—(1:VV) = =1y, (%”7) = n(%)z- (3.17)
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Since convection is most fully developed at the end of an experiment we calculate @ at ¢ = 10s.
For toluene at 300K, when 7 =~ 0.27x 10~3kgm~'s~! and Pr = 5, it can be shown from the
computed velocity data that dv,/0r close to a wire of radius 1.3 x 10~ m, is about 505~1, and hence
@ ~ 0.6 m—3s~1, In the case of a dilute monatomic gas, such as argon at room temperature
and pressure, when 7 = 2 x 10~%kgm~1s~! and Pr ~ 2/3, the value of 0v,/0r near the wire at the
end of a measurement (approximately 5s) would be about 150571, so that @ ~ 0.4Jm~3s~1,

N Pr=100
1

108 3

r 01
107k

£

108k

i b= 400
10° =

1 L 1 1 1[() L 1 1 1 2'0 i J

10-3¢

Ficure 2. Computed maximum vertical penetration distance of fluid initially in the plane of the lower
end of a heated vertical cylinder during the initial free convection transient.

These figures must be compared with the rate of heat input by conduction per unit volume of
fluid, pC, (8 T[0r),_,. Differentiating (8.4) and using the physical properties of toluene at 300K,
with a typical g of 0.1 ] m~1s~1, we obtain a figure of about 8 x 103 J m=3s~! when £ is 10s. In the
argon example the heating rate ¢ would be about 0.01 J m~1s~*and the heat input by conduction
near the end of a measurement would be roughly 25J m~3s~1. It follows that in the present
measurements on liquids viscous heating will not amount to more than 0.01 %, of the conduction
heating, and @ may be dropped from (8.13) without significant error. However, in measurements
on dilute gases, viscous heating could be as large as 2 %, of the conduction heating near the wire,
which might be significant in the most precise work. The effect could be largely avoided by using
data from the earlier part of a run, when convection is less pronounced.

(d) Radiation
The remaining terms to be eliminated from the right-hand side of (3.13) are those allowing for
the absorption and emission of thermal radiation by the fluid. Discussion of radiation in the

45 Vol. 270. A.
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566 E. McLAUGHLIN AND J.F. T. PITTMAN

non-steady-state hot-wire cell has previously neglected the effect and used the expression for
radiant heat transfer through vacuum to a black enclosure (Horrocks & McLaughlin 1963)

qr = 2mace[(T+ T,)*— T%]. (3.18)

This is permissible where the ratio of the cell to wire diameter is large and the optical thickness
of fluid in the annulus is small. These conditions are satisfied in measurements on dilute gases,
but for liquids the optical thickness is not generally small. On the assumption of a value of
3.5 mm~! for the absorption coefficient of toluene (Poltz 1965) averaged over the most important
wavelengths at 25 °C, the optical thickness along the radius of the present cell (0.5cm) is 17.5.
The use of (3.18) is therefore not valid nor can it be taken to give a high estimate of the effect,
since the radiant flux can be many times larger in an absorbing medium than in a transparent
one within an identical enclosure.

Leidenfrost (1964) and Poltz (1965) have derived expressions estimating the radiative con-
tribution to the apparent conductivity obtained in steady-state measurements. Poltz & Jugel
(1967) substantially confirmed predictions by experiment, and showed that the contribution for
toluene could be as large as 5 9,, depending on the fluid layer thickness. He suggested that effects
of similar size could be present in conductivity measurements by other techniques.

An expression for the effect of radiant heat transfer in the present technique is not available,
and indeed the derivation of one seems intractable, but the following simplified treatment
indicates the qualitative effects. The central difficulty in this problem of linked conduction and
radiation is removed if we neglect reabsorption of all radiation emitted in excess of that emitted
at the initial uniform temperature of the experiment. This, of course, results in a gross over-
estimate of the radiation effect, but the assumption will hold best in the early moments of a
run, when the optical thickness of the layer of warmer fluid is small. Radiation can now be re-
garded as introducing a heat sink term into the conduction equation (3.1). Thus

10T, _ 0Ty 10Ty S

kot o 'ror X (3.19)

where § is the increase in radiant emission per unit volume above the initial value in the ex-
periment. Equation (3.19) is to be compared with (3.1) and (7"—T5) is the temperature reduction
caused by radiation from the idealized pure-conduction value. We expect this quantity to be
only a few parts per hundred, so equation (3.19) may be rewritten:

100, T 13T S

kot o Ty A (3.20)
The effect of radiant heat transfer on the apparent conductivity is therefore measured by
oT dIg\ [oT _ (S\ [oT
( o ot ) o = (Xic) o’ (3.21)

from (3.1) and (3.20). Now, for small temperature increases, § will be approximately propor-
tional to 7, and so will increase from zero with time. 077/0t, on the other hand, is large in the
early part of an experiment and falls with time. The radiative contribution to the apparent
conductivity is therefore least in the early part of the measurement, The use of very short ex-
periments is not satisfactory however because of the low precision of the results, and the following
procedure is therefore used in the present work. The apparent conductivity at a time ¢ is defined
as the value calculated from the first ¢ seconds of a measurement on the assumption of pure
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conduction. These apparent conductivities are plotted against ¢ and extrapolated back to ¢ = 0
to give a ‘radiation-free’ value. In strongly absorbing fluids the radiative contribution will rise
very early in a run to a constant value, which may be expressed by the radiation diffusion approxi-
mation (Rosseland 1937), and the procedure described above would not be expected to eliminate
it, This is analogous to the presence of a radiative component in the conductivities of such
substances determined by steady-state methods, using even the thinnest practicable fluid layers.

(€) Reduction to the simple conduction equation
Equation (3.13) may now be reduced to
pC,DT/Dt = -V.Q. (3.22)
It has been seen that an experiment is restricted to the period in which the fluid next to the active
section of the hot wire convects in concentric shells, without mixing and without longitudinal
temperature gradients. It has been shown above that the movement of a fluid element has no

appreciable effect on its heating rate, and the substantive derivative may therefore be replaced
by a partial derivative referring to conditions at a fixed point:

pC,0T[0t = —-V.Q. (3.23)

Introducing the definition of the coeflicient of thermal conductivity by Fourier’s law
= —AVT, (3.24)
we have therefore pC,0T[ot =V.(AVT). (3.25)

If A is assumed to be temperature independent and if no axial temperature gradients exist, then
(3.1) is finally obtained.

3.3. Set 11 approximations
(a) Temperature dependent fluid properties

The line-source solution, (3.12), takes both A and pC), to be temperature independent, and
the approximation involved in this is now examined.
If we assume, over the temperature range of an experiment, a linear dependence on

temperature C(T) = (1+4T)C(0), A(T) = (1+xT) A(0), (3.26)
where C = pC,, and ¢ and y are constants, the conduction equation becomest
\ :
C(0) (1 +¢T7) %}’ = A(0) (1 +xT7) VT + x (%) . (3.27)

Ty is to be compared with 7 obtained from a solution of equation (3.1). Now 7 can be expressed
as a function of x¢/r? and so of s = r?/t, thus (3.1) may be written:

T”+% T'+T" = o. (3.28)
Primes in the present subsection denote differentiation with respect to s. If further we let
Ty = T+38T,
and 77 is also a function of s, then (3.27) can be written
8T +%8 T +8T = X[ TP+ TTy +TTST’] — I T, (3.29)

t The authors are indebted to Dr A. Fonda, Department of Mathematics, Imperial College, for the solution
to this equation.

45-2
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which can be rearranged to

BT 48T +5T" = —X(T'2+ TT”+%) —$TT, (3.30)
provided 8T < T. If (3.28) is multiplied through by 87" and the result subtracted from (3.30)
multiplied through by 77, the result can be rewritten ,
o (8T ,
55(577) = T=9) -x 7" (3.31)

after substituting for 7 in the right-hand side from (3.28). Equation (3.31) is satisfied by

2 0 AU 0 a—2u%
8T =2 T2+ (y—¢) (L%\) (e—sfs %l—du—2fs Eu—du), (3.32)

where, in the second term of the solution, 7" has been assumed to have the line-source value
given by (3.2). The constants of integration in (3.32) are zero since 87" = 0, when «#/a* = 0,
corresponding to S = oo,

For gases at normal pressures the thermal diffusivity is of (O) 105 m2s—1, so that s is (0) 10—¢
when ¢ = 55 and ¢ & 10~3cm. In this case it is therefore sufficiently accurate to rewrite (3.32) as

8T = —ixT?%— (x — ¢) T?/In 4¢*, (3.33)

For the case of liquids, where the thermal diffusivity is (O) 10~? m?s~! the intermediate expression
1T (0 o(—y—Ins—In4)

0T = —§xT?—(x—¢)T (—y—Tns)? (3.34)

should be used. Equation (3.34) is obtained by changing the variable in the second integral to
2u and using the expansion of the exponential integral given by (3.3). Calculations show that
87 in a typical experiment is never greater than a fraction of a percent of 7.

(b) Finite wire diameter

The error involved in assuming a heat-source of zero diameter can be estimated using a result
obtained by Jaeger (1956). In the solution of (3.1) the heat-source is considered to be of diameter
24, and have infinite thermal conductivity. Heat is generated at a rate ¢ per unit length in the
source. The other conditions are the same as those leading to the line-source solution. The
temperature rise of the heat-source is given by

T(a,t) = qG[A (3.35)
. _ 20% [*[1 —exp (—#%*)]
with G = =35 AT dx
where Ax) = [xJo(x) — @y () ]2+ [xT, (%) — X1 (x)]*
and © = 2pC,[pyCpy-
For large t*, (3.35) is well represented by
g a* 1 (0—2  4t*

which is seen to converge at large ¢*, to (3.4) with 7 set equal to a. The error involved in truncating
the series in (3.36) after three terms was determined by evaluating the quantity G to an accuracy
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of better than 0.01 %, by numerical integration. The results agree with those given by Jaeger
(1956) to the limit of accuracy claimed by him (three significant figures). Jaeger’s values, how-
ever, do not cover the range of interest in the present work.

TABLE 1. VARIATION OF GG AS A FUNCTION OF I* AND w

1+ w G HY,
100 0.5 0.42474 —~1.44
1.0 0.42921 —0.38
1.5 0.43066 —0.04
2.0 0.43138 +0.12
200 0.5 0.48264 —0.70
1.0 0.48513 —0.18
1.5 0.48594 —0.01
2.0 0.48635 +0.07
300 ‘ 0.5 0.51593 —0.45
1.0 0.51769 —0.11
1.5 0.51827 —0.01
2.0 0.51856 +0.05
400 0.5 0.53937 —~0.33
1.0 0.54075 —0.08
1.5 0.54120 +0.01
2.0 0.54142 +0.05
500 0.5 0.55747 —0.26
1.0 0.55861 —0.06
1.5 0.55898 +0.01
2.0 0.55917 +0.02

Table 1 gives the values of G for a range of /* and w applicable to measurements on liquids.
H is the percentage error involved in truncating (3.36) after the first term. The truncation error
after the third term was found to be below 0.05 %, in all the cases shown.

The quantity H may be thought of as a correction to be applied to the measured temperatures
before they are fitted as a straight line against the logarithm of time to obtain the thermal con-
ductivity. Its value at a given moment is seen to depend on ¢* and w, which in general are known
only approximately, and this means that data taken at the earliest moment of an experiment,
when H is largest, may have to be discarded because of unacceptable uncertainties in its value.
This question is dealt with more fully in the experimental section (part II).

(¢) Finite conductivity wire

Equation (3.36) shows that at large ¢* the flux at the surface of the infinite conductivity heat
source tends to the constant value ¢, as it must also do in the case of a wire of finite conductivity.
Under these conditions the temperature profile in the wire is most fully developed, and is given by

2 __ 2
T(r) = o ("72-’-) , (3.37)
where Ty (r) is the temperature in the wire at a radius 7, relative to the surface value. This parabolic
profile contrasts with the idealized flat profile in the infinite-conductivity source. If we assume
that the specific heats of the fluid and wire are the same in the real (Ay # 00) and idealized
(Ay = o0) cases, then the areas below plots of the temperature profiles in the wire and fluid can,
by suitable scaling of the axes, be interpreted as representing heat contents. If the heat genera-
tion is the same in both cases, then so also must be the areas at corresponding times. But, since
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the surface temperature of the wire will always be lower in the real case, we see that the idealized
flat profile must intersect the real parabolic one. The maximum wire temperature error resulting
from the assumption of infinite conductivity cannot, therefore, be greater than the greatest
temperature difference existing in the real wire, ¢/4mwAy. In a typical experiment on a liquid
using a platinum wire, ¢ >~ 0.1Jm~1s and Ay ~ 68Jm~1s™, so ¢/4mAy is (0) 102K. The
temperature rise of the hot wire in an experiment is about 0.5 K, so this upper estimate of the
error comes to 0.2 %, In practice, since we make use of the rate of change of the temperature, it
is only changes in the error which are of importance. The effect on the determined conductivity
will therefore be well below 0.1 %,.

3 -
200
2 L
g\B
& \
-
1 L
1 1 ]
0 1 2 3 4

10¢*

Ficure 3. Percentage error (departure from the line source value) of the hot-wire temperature
due to wall effects. (Range of 6* and ¢* applicable to liquids).

(d) Wall effects
The effect of the cell wall at a finite radius 4 can be investigated by using a solution to (3.1)
with the following boundary conditions:
T(rt)=0 (a<r<bt=0)
—0T (a,t)[0t = —q[2maX (¢ = 0) (3.38)
T(b,t) =0 (¢=0).
The third boundary condition is reasonable, in view of the high mass and conductivity of the
metal cell walls, and the difference between the second boundary condition and the corresponding
one assumed in (3.35) is unimportant at the large times which are of interest in considering wall
effects. The solution obtained by Fischer (1939) is

_— v _4 v __Xp(—KK))
(1) =1 [zlnb 4»§1k202{(~6(kpa))2_ alt (3.39)
R AVACR))
where £, are the roots of Jo(k,0) Y, (k,a) — Yy (K, 0) Jy(k,a) = 0, (3.40)
with v = 1,2, ...,00. When b/a = b* > 1, (3.39) is closely approximated by
_ 4 ¥ _ 4w _Xp(=t*g)[b*?)
T(a) = [mnb 4V§1g_ﬁ{(Yl(gy/b*) =l (3.41)
b2\ Yo(g) )
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where g, are the roots of Jo(g,) = 0. (3.42)

Calculations show that for values of 4* of practical interest (3.41) is sufficiently accurate, and
may be used to predict the effect of the walls on the hot-wire temperature. In a computer
evaluation of the solution, Bessel functions were generated from a polynomial approximation
(Abramowitz & Stegun 1956) and the roots of (3.42) were taken from tables (Royal Society
Mathematical Tables 1960). Truncation of the series at various values of » showed that inclusion
of the first 50 terms gave more than adequate accuracy. The results were compared with those
predicted for an infinite extent of fluid by the line-source solution. Figures 3 and 4 show the
difference expressed as a percentage of the wire temperature in the idealized case. The ranges of
b* and t* covered are those of interest in measurements on liquids and gases, and it will be seen
that experimental conditions can be chosen so that the errors remain negligible.

750
1500

error (%)

10-5¢%
Ficure 4. Percentage error (departure from the line source value) of the hot-wire temperature
due to wall effects. (Range of b* and ¢* applicable to gases).
(¢) Interfacial thermal resistance

Jaeger (1956) has solved the conduction equation with boundary conditions as for (3.35) but
including a constant surface resistance to heat transfer, 1/, defined by

q = 2mahs 8T,

where 875 is the temperature jump at the interface between the heat source and the fluid.
The heat-source temperature under these conditions is given at large ¢* by

N SN e W7 S (e WL
Th(a,?) —4_“_/\{ahs+ln > +tow absa)t*+ Sor* In > +.ge (3.43)

By comparison with (3.36) it can be seen that the effect on the slope of the temperature-time

relation is given by ( a7 dT) dT 2

since '_‘_‘! = T3 —! at lalg(: t.
dt 4—'"A t
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The condition for interfacial resistance to be negligible is therefore that 2A/akswt* should be
small. For dilute gases the temperature discontinuity at a solid surface is well known experi-
mentally, and is predicted by kinetic theory for a flat surface as

_9—f dT
oy =~ A

The mean free path, except at very low pressures, will be orders of magnitude smaller than the
wire diameter, so that (3.45) can be used to obtain 4. Hence

(3.45)

}ls = %f?l—. (3.46)
The mean free path for nitrogen gas at standard conditions is approximately 6 x 10~8cm. In a
typical conductivity determination the platinum wire diameter is 2.5 x 10~3cm and the accom-
modation coefficient may be taken (Taylor & Glasstone 1951) as 0.8 with A = 0.03 Jm—1s~1K~1
and w = 2x 1073 then 2A/ahswt* ~ 1.5 x 10~* when ¢* is 0.5 x 10%, which corresponds to an
early time in a gas measurement. At pressures not very much below atmospheric, constant
interfacial resistance thus has a negligible effect on the determination of gas conductivites. The
existence of a temperature discontinuity at a solid/liquid interface has not been established
experimentally, and would seem unlikely in view of the efficient accommodation which would
be expected and the short distance between molecular collisions.

(f) Time-dependent heat-source power

In the present work, current is supplied to the hot wire from a regulated high-voltage source
via a large, stable load resistor. Thus the current in the circuit at time ¢ is

|14
T R+ R +OR()’

where V' is the supply voltage, Ry, the load resistance, and R’ and SR'(¢) are respectively the
initial value of total resistance of the hot wire and its increase during an experiment. Writing an

1(t) (3.47)

expression for power dissipation in the cell as a function of time we therefore have

90 = 1 (RL+—R'V+8E"(B)2 (R +8R'(1)), (3.48)

where L' is the total hot-wire length. Resistance values are chosen so that current variations
make a negligible contribution to the dependence of ¢ on ¢ (see part IT of this paper), so we may

write 1
4(t) = HIR +BR (1)
‘ I? dR’
or 9(t) = ¢+ Tula, BT (3.49)

where ¢ = I?R'[L’ is the initial heating rate per unit length, Ty(a, ¢) is the temperature rise of
the hot wire and dR’/d T"its temperature coeflicient of resistance, which is taken as constant over
the range. An expression for the effect of a small variation of the heating rate is derived by first
considering the temperature rise produced by an instantaneous, infinite line-source of heat, of
energy ¢; per unit length occurring at ¢ = 0. Say,

Ti(r,t) = qif(r,1). (3.50)
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The temperature rise at a fixed radius a resulting from a continuous source originating at ¢ = 0,
and having time-dependent power, is obtained (Carslaw & Jaeger 19594) by integrating (3.50)

t
Tofart) = [ g(w) ) (3.51)
whereas for a constant power source
¢
T(a,1) = ¢ f ) du, (3.52)
0
The effect of the variable power source is therefore given as
_IPdR’
Tofa,t) = T(a,t) =737 | £0) Ta,0) du (3.53)
from (3.49), (3.51) and (3.52); or provided that the effect is small by
IEdR' [t
Ty(a, t) — T (a,t) = Pdef(u) T (a,u) du. (3.54)
But from (3.52) ) = lch(lj’ J (3.55)
Substituting (3.55) in (3.54) and integrating,
I? dR’
Tolet) = T(@) 2 5,7 37 (T@ )" (3.56)

Gillam, Romben, Nissen & Lamm (1955) obtained the same result in an analysis based on
Duhamel’s theorem. In a typical experiment the effect on the hot-wire temperature amounts to
no more than a fraction of one per cent, as can be seen from the specimen calculation of results.
The approximation in (3.54) is therefore permissible.

(g) End effects

Equation (3.1) allows for no axial temperature variations and would be expected to hold only
at points remote from the ends of a uniformly heated wire. In practice the temperature of the
hot wire falls towards its ends, and the distance over which this disturbance extends can be
estimated using a steady-state result of Carslaw & Jaeger (19594). The temperature distribution
along a heated wire of total length L’ and radius @ with its ends held at a constant reference

temperature is T = g . _cosh M@GL —2)
© 2mah cosh MLL'

(3.57)
The radial heat loss from the wire is taken to be 2wahT'(z), where £ is a constant heat transfer
coefficient. The quantity M is defined by
= (2h/Awa)t,
and the value of # may be taken from (3.4) as
h ~ 2A[a(In 4t* — ), (3.58)

¢* should be chosen to correspond to the end of a measurement, since the end effects are most
important then.

On the basis of such estimates, and allowing a large safety margin because of their approximate
nature, the potential leads are positioned to avoid major end effects. However, the potential

46 Vol. 270. A.
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leads themselves provide a high conductivity heat path away from the hot wire and inevitably
produce a temperature distortion near their point of attachment. Briggs (1965) estimated the
heat loss from the central wire into the potential leads by treating them as cooling fins. An alter-
native treatment, estimating the temperature reduction in the hot wire at the point of attachment
of the potential lead, is as follows.

A steady-state situation is visualized with % a constant heat transfer coefficient. 7'(z) is the
temperature in the active section of the hot wire between the potential leads, 7 (y) is the temper-
ature in the end section of the hot wire outside the potential lead and 7p(x) the temperature in
the potential lead. The radial heat loss per unit length from the active section of the wire is then
2mah T (z) with similar expressions for the other wires. Equations governing the temperature
distribution along the wires can be obtained by writing heat balances. For example, over an
element of the active section, where there is heat generation at a rate ¢ per unit length

2
gdz—A dﬁg me? = — /\(g+ q—zﬁz) wa?+2mah T 8z,

dz * dz?
giving d2T)dz>— B2T+A42 =0 (3.59)
and, similarly, AT /dy? — B* T+ A% = 0 (3.60)
and d*Tp/dx* — B*T, = 0, (3.61)

where B? = 2k/ady and A% = ¢[ma®Aw. The boundary conditions are taken as
T(0) = Tp(0) = 0,
Ip(l) =Tp(1) = T7(0),

dT dT; d7;
and (—) = (——E) + (—E) , 3.62
" dZ z2=0 dy y=1 dx x=1l ( )

which equates the heat flux into the potential lead to the sum of the fluxes towards the junction
in the hot wire. The position coordinate for the active section is measured from the junction,
and for the other sections from their ends. These two latter sections are assumed to be of length /.
Solution of the simultaneous differential equations gives

T'(z) = Cexp (— Bz) + A% B?, (3.63)
where € = — (4%/B?) (142 tanh Bl)-1 {1 +2 tanh Blexp (- BI) + lif%%lﬂ},
which for large B! ~ — (A42/3B%) {1 +2exp (— Bl)},
so that T(z) = (42 B%) {1 —}exp (— Bz)). (3.64)

To justify this simplification an estimate of % is required. The heat transfer coefficientin an
experiment will always be greater than the value for steady-state conduction between concentric

cylinders h = Aaln (b/a). (3.65)
Using this expression one can therefore say
1A 1 \#
2> (%) (3.68)

Takingdatafor platinumand typicalliquids,itcanbeshown that Bislarge whena = 1.3 x 10~3cm
and b = 0.5cm. For example, B ~ 25 for toluene at 25 °C. In practice [ is not less than 1 cm, so
the simplification of (3.64) is permissible.
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The fractional reduction in the hot-wire temperature at the point of attachment of the potential
lead is therefore found to be independent of 4, and is given by

(T'(e0) = T(0))[ T'(e0) = 3. (3.67)

In reality the potential-lead errors would be expected to become larger in the later stages of
an experiment for two reasons: first the heat transfer coefficient from the potential leads will
rise as convection develops and the fluid velocity across them increases. Secondly, the leads will
inevitably disturb the cylindrical symmetry of the convection flow pattern and produce some
radial convective heat transfer. These effects, which may be called secondary convection heat
effects to distinguish them from the primary effect which limits the duration of a run, will
cause the apparent thermal conductivity, as defined above, to increase with the duration of an
experiment. The extrapolation back to zero time, which was suggested in §3.2(d), will also
minimize these errors, and leave only those due to conduction losses along the potential leads
into a virtually stationary fluid.

In view of the large size of the temperature distortion estimated by (3.67) it seemed advisable
to determine the resulting error experimentally. This is described in an appendix. It was found,
however, that the average temperature distortion in a 10 cm cell was only a fraction of a percent.

A final point which should be mentioned in connexion with temperature variations along the
active section of the hot wire is their effect on the power dissipation rate per unit length. This
comes about in two ways. First, the resistance per unit length is no longer constant, but since
the resistance change in an experiment is only about 0.1 %, the change in power dissipation
resulting from this non-uniformity is completely negligible. Secondly, since direct current is
used, the Thompson effect causes a small negative or positive power to be superimposed on the
resistive heating where temperature gradients exist. The size of the effect is given by

8¢ = opIdT/dz. (3.68)
The Thompson coefficient for platinum is (National Research Council 1926)
op = 9x 108 VK-,

and the experimental measurements of the temperature profile in the hot wire near the potential
leads (see appendix) show that

d7/dz ~ 0.3 Kcm™ with the result 8¢ ~ 6 x 10" 8Wcm™

This is to be compared with ¢ & 10-*W cm™ and is therefore negligible.

(k) Initial fluid temperature distribution

An expression for the rate of re-equilibration of the cell after a measurement is required in
order to estimate the minimum permissible interval between runs. The temperature at time ¢
and radius r produced by a line source originating at { = 0 and 7 = 0 with time dependent power
q(¢) is in general (Carslaw & Jaeger 1959)

T(r,1) = j :%%exp (—rfan(t—1)) (3.69)

If we say that gty =q¢ (0<t<t),

) =0 (L<i<h),
46-2
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then 7'(r,t,) can be taken to represent the temperature at a time (£, —¢,) after the end of a run
of duration #,. Changing the variable to 7%/4«¢ and noting that the integrand is zero in ¢, < ¢ < Z,

T(r,1,) =;g_,~{f°° E_—udu_fw ﬂdu}. (3.70)
p \J 7 7

2fdxty U 2 dk(ta—t,) U

we have

From (8.3) and (3.4), for large #, and (¢, —1;) the wire temperature is therefore given by

-7 ly @ 4
T(az,z:z)_477/\{111'52_751 4/<t2(t2-—t1)+"°; (3.71)

or, expressed as a fraction of the final temperature in the previous run, by

1(a, 1) ~ In {t,/(t,— 1)}
T(a,t,) = In{dxt,fa>y'}" (3.72)

The neglect of the second term in (3.71) is permissible if #, is chosen sufficiently large for
T'(a,ty)| T (a,t,) to be of the order of 0.1 %,. The interval between runs, calculated on this basis,
will be a safe estimate, since the presence of the cell walls and convection will both speed up
re-equilibration.

APPENDIX. MEASUREMENT OF THE EFFECT OF THE POTENTIAL LEADS
ON THE HOT-WIRE TEMPERATURE

We are concerned here with the effect of the potential leads on the average temperature over
the active section of the hot wire in the early moments of an experiment, when convection is
only slightly developed and the fluid is virtually stationary. Under these conditions suppose that
the fractional lowering of the hot-wire temperature at a distance z from the potential-lead junction
is given, for a particular geometry, by

T(OO) - T(Z) = F(t’ a,z, P, Cp’ P> pr, /\5 AW)
or [T(00) — T(z]a)]/ T(00) = F'(*, z]a, A|Aw, ). (A1)

In using a resistance measurement to obtain the hot-wire temperature we are concerned with
the averaged value of the temperature reduction:
2L[a —

57 = o) ~Tzle) (007;(2/ % d(za). (A2)
This quantity was evaluated by means of measurements on a large-scale model immersed in a
tank of glycerol sufficiently large for end and wall effects to be negligible. Nickel wire of 0.018in.
diameter was used, and heating was by a constant alternating current chosen to produce a
temperature rise of about 1.50 K over 5 min. The temperatures at points along the nickel wire
were measured by 0.056 mm diameter chromelalumel thermocouples spotwelded to the wire.
The thermocouples were connected to the floating input of the integrating digital voltmeter,
which recorded the d.c. voltages with a resolution of 0.1 1V at intervals of 5s.

Before the model was completed by attaching the analogue of the potential lead, a series of
runs was made in which the output of each thermocouple was recorded as the nickel wire heated.
Ideally, of course, the voltages should have agreed at corresponding times, but reproducible
scatter of a few microvolts was observed. The output from each couple was plotted against the
logarithm of time and good straight lines were obtained. Smoothed values from these plots were
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used to calculate mean outputs at given times, and the corrections required to bring each
thermocouple reading onto the mean were noted.

The model was then completed by attaching the potential-lead analogue and a further series
of runs made. Corrected thermocouple readings were again smoothed by plotting against the
logarithm of time, and then crossplots were made for a series of times, showing the output as a

°
L - P " 2 a
" Py o ® o
100} *
>3. [ N 2 O °
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2. - L ]
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1 H
5 3 B
102z/a

Ficure Al. Temperature profiles (in terms of thermocouple outputs) in the model of the hot-wire junction.
The analogue of the potential-lead junction is at z/a = 0. The results are for the nickel wire/glycerol system.
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Fi1cure A2. Percentage error in the average temperature of the active section of the hot wire as a function of
the ratio of the thermal conductivities of the wire and fluid.

function of the distance of the thermocouple from the junction. A sample set of results is shown in
figure A 1. It is interesting to note that the prediction of a 30 9, temperature reduction at the
junction by (3.67) of the text is approximately confirmed.

The error in the average hot-wire temperature (equation (A 2)) was obtained from plots such
as those in figure A1 by integration using a planimeter and was found to be independent of
time. For L/2a = 2 x 10 (corresponding to the experimental cell) the value was equal to 0.15 %,.
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The values of A/Ay and o in the nickel-glycerol experiment are of the same order as those which
apply when using the cell in measurements on organic liquids, so this result shows that errors
in the determined conductivities will be small. Equation (3.4) of part I suggests that the de-
pendence of the error on » will be slight for #* 0(100)—corresponding to a few tenths of a second
in a conductivity measurement—and the dependence on A/Ay is likely to be much more important.
To obtain some indication of this dependence the experiment was repeated using copper wires
immersed in glycerol. Again the error was found to be independent of time, but was now equal
t0 0.53 9, for L/2a = 2 x 103, These two values are plotted against Ig (A/Ay) in figure A 2 together
with a further point at the origin (since no error occurs when A/Ay = 1). In view of the smallness
of the error these three points were considered to give sufficient indication of the dependence
on A/Ay, and corrections were read from the tentative curve shown in figure A 2 (in the present
work the values of Ig (A/Ay) lie within the range —2.6 to — 2.8). The corrections are considered
to be accurate within about 25 %, so the residual errors in the conductivities, from this source,
should be below 0.1 9.
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